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A Comparative Study of Dual-tree Algorithms for
Computing Spatial Distance Histograms

Chengcheng Mou,† Shaoping Chen,† and Yi-Cheng Tu

Abstract—The 2-body correlation function (2-BCF) is a group of statistical measurements that found applications in many scientific
domains. One type of 2-BCF named the Spatial Distance Histogram (SDH) is of vital importance in describing the physical features of
natural systems. While a naı̈ve way of computing SDH requires quadratical time, efficient algorithms based on resolving nodes in
spatial trees have been developed. A key decision in the design of such algorithms is to choose a proper underlying data structure: our
previous work utilizes quad-tree (oct-tree for 3-dimensional data) and in this paper we propose a kd-tree-based solution. Although it is
easy to see that both implementations have the same time complexity O

(
N

2d−1
d

)
, where d is the number of dimensions of the

dataset, a thorough comparison of their actual running time under different scenarios is conducted. In particular, we present an
analytical model to rigorously quantify the running time of dual-tree algorithms. Our analysis suggests that the kd-tree-based
implementation outperforms the quad-/oct-tree solution under all scenarios with different data sizes and query parameters. In
particular, such performance advantage is shown as a speedup up to 1.23X over the quad-tree algorithm for 2D data, and 1.39X over
the oct-tree for 3D data, respectively. Results of extensive experiments run on synthetic and real datasets confirm our findings.

Index Terms—scientific databases, query processing, spatial distance histogram, performance, quad-tree, oct-tree, kd-tree
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1 INTRODUCTION

R ECENTLY, computational science fields have witnessed
the momentum of data-intensive applications that

severely challenge the design of database management sys-
tem (DBMSs). Much efforts have been made in building
systems and tools to meet the data management needs
of such applications [1], [2], [3]. Generally, data-intensive
scientific applications necessitate considerable storage space
and I/O bandwidth, due to the large volume of data [4], [5],
[6]. For instance, molecular simulations (MS) evaluate the
movement patterns and interaction forces among molecular
structures, each of which consists of millions of atoms. Other
than the large volume of data, there is also the challenge
of processing scientific queries that are often analytical in
nature and bear high computational complexity [7], [8]. One
remarkable example is the computation of 2-body correlation
functions (2-BCFs), which are statistical measurements that
involve every pair of data points in the entire dataset. One
type of 2-BCF called the Spatial Distance Histogram (SDH)
is of vital importance in many computational sciences and
thus the focus of this paper.

1.1 Problem Statement

The SDH problem can be formally stated as follows.
Given the coordinates of N points in a (2D or 3D) Cartesian

coordinates system, draw a histogram that depicts the distribution
of the point-to-point distances among the N points.
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Generally, an SDH comes with a parameter l, which is
the total number of buckets. Because the dataset is gen-
erated from a simulation system with a fixed dimension,
the maximum distance (Lmax) between any two points
in the system is a constant. In this study, we deal with
the standard SDH, whose buckets are of the same width.
The width of buckets p = Lmax/l, also named histogram
resolution, is usually used as the parameter of the query.
Specifically, with a given histogram resolution p, SDH
asks for the number of point-to-point distances that fall
into ranges [0, p), [p, 2p), [2p, 3p), ..., [(l − 1)p, lp), respec-
tively. Obviously, for the same dataset, more computation
is needed for an SDH with smaller p value.

1.2 Motivation and Related Work
The SDH is a fundamental tool in understanding the phys-
ical features of systems consisting of many particles. For
that reason, SDH is routinely computed in analyzing data
generated from a very important type of computer simula-
tion - particle simulations. Such simulations treat individual
components (e.g., atoms, stars, etc.) of large systems (e.g.,
molecules, galaxies, etc.) as classical entities that interact
with each other following Newton’s Law. These techniques
are applicable in modeling of complex chemical and biolog-
ical system that are beyond the scope of theoretical models,
under such scenarios the simulation is called molecular
simulations (MS). MS has been widely utilized in material
sciences [9], astrophysics [10], biomedical sciences, and bio-
physics [11]. In a molecular system, the SDH is the discrete
form of a continuous statistical distribution named radial
distribution function (RDF), which describes how the atom
density varies as a function of distance from a referenced
point. RDF is an essential component in computing a series
of critical quantities describing a system, such as internal
pressure and energy [10], [12], [13].
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Computation of SDH also finds its application in other
domains. In computer vision and pattern recognition, the
concept of Color Correlogram, which is a table indexed by
color pairs, where a k-entry for < i, j > specifies the proba-
bility of a pixel of color j at a distance k from a pixel of color
i in the image, has been proposed. It is regarded as a robust
feature for effective scene identification under changes in
viewing angle, background scene, partial occlusion, and
camera zoom [14], [15]. A single image generated from
modern camera might contain millions of pixels. Therefore,
it takes considerable amount of time to compute the color
correlogram of these images.

In the data mining field, a feature vector represents
an object. The multi-dimensional feature vector could be
reduced to low-dimensional feature vector by using linear
reduction techniques, such as Principal Components Anal-
ysis (PCA), Karhunen-Love Transform (KLT), the Discrete
Fourier (DFT), Cosine Transform (DCT), etc. Then SDH
of low-dimensional feature vector in Cartesian Coordinate
System could therefore statistically conduct similarity search
or classification of the specific objects [16], [17].

The significance of this work is not limited to SDH
or the 2-BCF themselves: similar techniques presented in
this paper can provide insights in computing the more
general n-body correlation function (n-BCF) where n >
2 [18]. The n-BCFs are of interest in many forms: n-
point function, n-tuple problem, nearest-neighbor classifi-
cation, nonparametric outlier detection/denoising, kernel
density/classify/regression [19] are examples of statistical
measurements related to n-BCF, and their applications are
found in various scientific fields [20], [21], [22].

1.3 Objective

In a dataset with N particles, SDH requires O
(
N2
)

com-
putation time to carry out all point-to-point distance com-
putations. Our previous work proposed more efficient al-
gorithms [23]. Instead of computing every point-to-point
distance, the main idea of such algorithms is to analyze
the distances between two groups of points, as described
in Section 2.1. These groups are represented by nodes in a
space-partitioning tree structure, called density map (DMs),
as discussed in Section 2.2. The reduction of running time
is achieved by the fact that the brute-force distance compu-
tations are substituted by recursively calling the Resolution
Function that takes two tree nodes as inputs (for which
the algorithms are named dual-tree algorithms). The main
objective of this paper is to provide analytical and empirical
evaluations of different data structures for implementing
the DM. So far our work only used a quad-tree (oct-tree
for 3D data) for such purposes [23]. In this paper, we
propose and evaluate an implementation based on a region
kd-tree whose details will be introduced in Section 2.2.
Although algorithms based on both trees have the same time
complexity O

(
N

2d−1
2d

)
where d is number of dimensions of

dataset [24], a comparison of their actual execution time
under different scenarios is thoroughly studied. Our main
technique is to transform the analysis of the number of
particle counts into a problem of quantifying the area of
interesting geometric regions. Our analysis leads to rigorous
results for differentiating the running time of these two

dual-tree algorithms (quad-tree-based and kd-tree-based)
under different cases. Our analysis suggests that the use
of kd-tree brings significant performance advantage to the
dual-tree algorithm under all data sizes and query parame-
ters. In particular, the kd-tree yields a speedup up to 1.23X
over the quad-tree in processing 2D data, and a speedup up
to 1.39X over the oct-tree in processing 3D data. Results of
extensive experiments confirm such findings.

1.4 Paper Organization
The remainder of this paper is organized as such: In Sec-
tion 2 we sketch the dual-tree algorithm; We discuss our
modeling approach and present the main analytical results
in Section 3; Based on the main results, we compare the
performance of the two dual-tree algorithms in Section 4;
We present extended analytical results about 3D data in
Section 5; We report experimental results in Section 6, and
conclude this paper in Section 7.

2 PRELIMINARIES

In this section, we elaborate on the dual-tree algorithm for
computing SDH, in order to pave the way for future discus-
sions related to the performance evaluation of the algorithm.
In Table 1, we list the notations that are used throughout this
paper. Note that symbols defined and referenced in a local
context are not listed here.

TABLE 1: Symbols and notations

Symbol Definition
p width of histogram buckets
l total number of histogram buckets
h the histogram array with indexed elements hi(0 < i ≤ l)
N total number of particles in data
i an index symbol for any series

DMi the i-th level of density map
d number of dimensions of data
δ diagonal length of the cells

2.1 Overview of the Dual-tree Algorithm
The main idea of the dual-tree algorithm is to work on the
distances between two clusters of points instead of those
between two individual points to save time. From now
on, we use 2D data to elaborate on technical details till we
explicitly extend our discussions to 3D data in Section 5. The
dual-tree algorithm starts by building the tree structures,
and cache the total number of data points in each node. An
entire level of the tree with such counts is called a density
map (DM, see Fig. 1 for examples). The main body of the
algorithm is a primitive named ResolveTwoTrees (referred to
as resolution function hereafter) which takes a pair of tree
nodes as input. Given a pair of nodes on the DM, if the both
minimum and maximum distances between these two nodes
fall completely into a histogram bucket, we say that this pair
is resolvable. An important observation here is: for a pair of
resolvable nodes, we only need to add the total number of
distances between them to the corresponding bucket in the
SDH. This is also the main reason why such algorithm is
more efficient than the brute force approach. If the pair of
nodes is unresolvable, the resolution function recursively
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visits next level of the tree to resolve all pairs of child nodes
(cells, since they are the same, we may alternatively use
them hereafter), so on and so forth. If a pair of nodes is
still unresolvable at the leaf level, we have to compute all
the point-to-point distances between the data points across
that pair of nodes.

Algorithm 1: The dual-tree algorithm for SDH
Data: all data points, DM, and bucket width p;
Result: an array of distance counts h

1 initialize all elements in h to 0;
2 DM0 ← first DM with cell diagonal length δ ≤ p;
3 for every cell in DM0 do
4 n← number of particles in the cell;
5 h1 = h1 + 1

2n(n− 1);
6 end
7 for every pair of cells mi and mj in DM0 do
8 ResolveTwoTrees (mi,mj);
9 end

10 return h

11 ResolveTwoTrees (m1,m2)
12 n1 ← number of of points in m1

13 n2 ← number of of points in m2

14 if n1 = 0 or n2 = 0 then
15 return
16 end
17 if m1 and m2 are resolvable into a bucket i then
18 hi ← hi + n1n2;
19 return
20 end
21 if m1 and m2 are on the last density map then
22 for each particle A in m1 do
23 for each particle B in m2 do
24 f ← distance between A and B;
25 i← the bucket f falls into;
26 hi ← hi + 1;
27 end
28 end
29 else
30 for each child node m′1 of m1 do
31 for each child node m′2 of m2 do
32 ResolveTwoTrees (m′1,m

′
2)

33 end
34 end
35 end

The pseudocode that summarizes the technical details
of the algorithm can be found in Algorithm 1. The core
process of the algorithm is the procedure ResolveTwoTrees,
which tries to resolve two cells m1 and m2 on the same
DM. In order to check whether m1 and m2 are resolvable,
we firstly compute the minimum and maximum distances
between any points from m1 and m2. Note this process only
requires constant running time. When both minimum and
maximum distances between the two cells fall into a same
histogram bucket i, the value (i.e., distance counts) in bucket
i will increment by n1n2, where n1 and n2 are the number
of points in the spatial region represented by m1 and m2,
respectively. If m1 and m2 are not resolvable on density
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(a) Quad−Tree

(b) kd−Tree

Fig. 1: A partial DM implemented by quad-tree and kd-tree.
Each cell is marked by the total number of data points in it

map DMi, we move to next level of Density Map DMi+1,
and recursively call the same function to check each of four
children in m1 to each of four children in m2. However, if
two nodes are still not resolvable on the last level DM of the
tree, we have to calculate the distances between all pairs of
points from the two cells. In addition, if we have n1 = 0 or
n2 = 0 (i.e., empty nodes), the procedure directly exits.

2.2 Implementations Based on Different Trees
To implement Algorithm 1, one decision to make is what
type of data structure we use to build the DM. Our previous
work [23] uses a quad-tree: when the space is partitioned
to lower-level nodes, the tree simultaneously bisects both x-
and y-dimensions at each partition, generating four children
for each internal node. In this paper, we propose the use of
kd-tree, which alternatively bisects its x- or y-dimension at
each partition, leading to a tree degree of two (Fig. 1). In
both trees, the region containing all points in the dataset
represents the root node. Given the same dataset, the kd-
tree introduces an extra level of nodes in between any two
neighboring levels of the quad-tree, as shown in Fig. 2. The
immediate question is whether the kd-tree-based algorithm
has better performance, and this paper presents an answer
to this question via a rigorous analytical approach. A special
note here is that both trees define a node by a prefixed
region instead of being driven by data distribution. The
main reason for this is: the resolving of two trees is a process
that is only related to the dimensions of the two trees, the
data in the trees are irrelevant.

Before we start performance analysis, it is essential to
present two critical features of the dual-tree algorithm re-
garding the size of the tree structures. First, the height of
the tree is determined by the data size N . Specifically, we
keep partitioning the tree until the average number of data
points in each node is smaller than a threshold b. Thus, the
height of the tree can be expressed as

H =

⌊
logk

N

b

⌋
+ 1 (1)

where k is the degree of the tree (i.e., 4 for quad-tree and
2 for kd-tree). The value b is set based on the following
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Fig. 2: Different levels on quad-tree and kd-tree. Dash line
represents the intermediate level that only exists in kd-tree, and
a solid line corresponds to a level that exists in both trees

reasoning: the cost of computing all the point-to-point dis-
tances is b2, and the cost of resolving two cells is a fixed
value C ; if we are to further partition the nodes into a new
level, there will be k2 resolution calls, therefore it makes
sense to create this new level only if we have b2 > k2C ,
or b > k

√
C . Otherwise, we should not further partition

the nodes and make the current level the leaf level. The
important observation here is: given the same N , as C does
not change, the kd-tree can build an extra level on the
bottom as compared to the quad-tree.

Another important feature of the algorithm is the level
of the tree where the algorithm starts calling the resolution
function. Specifically, the algorithm starts at a tree level (i.e.,
a DM) where the size of the cells/nodes satisfies

a ≤ p√
d

i.e. δ ≤ p (2)

where a is the side length (δ is the diagonal length) of the
cells, p is the histogram bucket width, and d is the number
of dimensions in the data. This is because, if the above is not
true, none of the node pairs will resolve. In other words, the
bucket width p determines the starting DM. Consequently,
the algorithm may start at the identical or different levels
on the quad-tree and kd-tree, depending on the value of p.
The extra levels that only exist in the kd-tree give chances
for the algorithm to start earlier (at such extra levels) in the
tree (Fig. 2).

As we shall see later (Section 4), the above two features
define four scenarios to consider in comparing the perfor-
mance of the kd-tree-based algorithm to that of the quad-
tree-based one. In these four cases, the relative performance
of the algorithms are different. We will discuss the scenarios
in a 3D system in Section 5.

3 MAIN ANALYTICAL RESULTS

We first present our analysis on how fast the resolution
function resolves the points when it recursively visits the
tree in a depth-first manner. This turns out to be a key step
in modeling the relative performance of the two algorithms.
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Fig. 3: Theoretical boundaries of bucket 1 and bucket 2 regions
for cell A, with the bucket width p =

√
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3.1 The Geometric Modeling Approach

To quantify the number of points resolved, we transform the
problem into a geometric modeling problem. In particular,
we develop a model to quantify how the area of the region
that can be resolved increases as more DMs (i.e., tree levels)
are visited. Consequently, any points that fall into such
regions are resolved.1

Given any cell A on the DM where the algorithm starts
(Fig. 3), we first define a theoretical region that contains all
particles that can possibly resolve into the i-th bucket with
any particle in A. We name this region as bucket i region
for cell A, and denote it as Ai. Note that A can be either a
square or a rectangle in the kd-tree implementation. In all
illustrations of this paper, we only draw rectangular cells
but our analysis will cover both cases. Going back to Fig. 3,
cell A is marked with its four corner points O1, O2, O3, and
O4, A1 is therefore bounded by 4 arcs and 4 line segments
connected by points C1 through C8. The arcs are of the same
radius p. Here we consider the special case of Equation (2):
the diagonal length of cell A is set to be δ = p√

2
. However,

as we shall see later, the case of δ < p√
2

will not change our
analytical results.

The cells that are actually resolvable into bucket i with
any subcells in A also from a region. We named such region
as coverable region and denote it as A′i. Since a coverable
region contains rectangles or squares, its boundary (solid
blue line in Fig. 4) shows a zigzag pattern. An essential part
of our analysis is to study the area of coverable regions over
all buckets and how the density map resolution affects it.
We define the ratio of

∑
iA
′
i to

∑
iAi as the covering factor,

which is a critical quantity to measure how much area are
“covered” by the resolvable cells. Note that the boundary of
A′i approaches that of Ai (solid black line in Fig. 4) when
the dual-tree algorithm visits more levels of the tree. As a
result, the covering factor increases. Of special interest to
our analysis is the non-covering factor which indicates the

1. Note that such transformation is based on an implicit assumption
that data is uniformly distributed in the simulation space, because we
adopted space-oriented (bisecting each dimension) method. We will
remove this assumption in our analysis as shown in Section 4.1.
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Fig. 4: Actual (solid blue line) and approximated (dashed green line) coverable region for bucket 1 under: a. m = 2, b. m = 3, c.
m = 4, and d. m = 5. Outer solid black line represent the theoretical bucket 1 region. All arrowed line segments are drawn from
the centers to the corresponding arcs with radius p

percentage of area that is not resolvable, i.e.,

non-covering factor = 1− covering factor (3)

Our previous work [25] has studied the resolution ratio
of dual-tree algorithm running on top of the quad-tree. A
very important feature of the non-covering factor in the
quad-tree can be summarized in the following theorem.

Theorem 1. Let DMi be the first density map where the quad-
tree algorithm starts running, and we define the non-covering
factor αm as a function of the levels of density maps visited m.
In other words, αm is the percentage of cell pairs that are not
resolved upon visiting DMi+m. We have

lim
p→0

αm+1

αm
=

1

2

Basically, Theorem 1 says that half of the node pairs are
resolved when one more level of the tree is visited. From
this theorem we can easily derive a recurrence function
that leads to the time complexity of the quad-tree-based
algorithm dropping to O

(
N

2d−1
2d

)
, where d is number of

dimensions of dataset [24]. This theorem, by focusing on the
non-covering factors on two consecutive levels, essentially
shows how fast the data points could be resolved while the
dual-tree algorithm visits the quad-tree structure.

For the same dataset, the kd-tree has extra levels that are
not seen in the quad-tree, the data points could be resolved
earlier in the kd-tree by the resolution function. Intuitively,
if more data points are resolved by the resolution function
call, fewer of them are left for distance computation. That is
the benefit of calling the resolution function earlier (among
the intermediate tree nodes). On the other hand, the time
we spend on calling the resolution function on such levels
is a pure cost. Just by looking, it is not clear how much net
performance gain such “early resolution” in the kd-tree can
generate. Therefore, it is essential to study the same quantity
αm+1/αm in the kd-tree.

3.2 Non-Covering Factor Ratios in kd-tree

Rather than square cells in the quad-tree, the kd-tree in-
troduces rectangular cells on the intermediate levels, the
algorithm therefore alternatively visits the square and rect-
angular cells, resulting in more complicated scenarios in
studying the resolution ratios on the kd-tree. Our main
results on kd-tree can be seen in the following theorem.

Theorem 2. Let DMi be the first density map where the dual-
tree algorithm starts running on a kd-tree, and αm be the non-
covering factor upon visiting the density map that lies m levels
below DMi, we have

lim
p→0

αm+1

αm
=

3

4
(4)

when i+m is even, and

lim
p→0

αm+1

αm
=

2

3
(5)

when i+m is odd.

In the remainder of this section, we present a proof of
Theorem 2. However, readers can jump to Section 4, in
which we show how Theorem 2 leads to effective analysis
of algorithm performance.

3.2.1 Bucket Region

As shown in Fig. 3, the bucket 1 region for cell A is
connected by C1 through C8; C1C2, C3C4, C5C6, and C7C8

are all line segments; C2C3, C4C5, C6C7, and C8C1 are all
90-degree arcs with radius p and centered at O2, O3, O4,
and O1, respectively. Apparently, the area of this region is
πp2 + 2pδ + pδ + δ2

2 . The bucket 2 region of A is similar
to bucket 1 region but the radii of the four arcs are 2p –
this region is connected by D1 all the way around to D8.
However, if the points are too close to A, they will only be
resolved into bucket 1, because their distances to any points
in A will always be shorter than p. These points formed a
region, which is connected by four arcs Q1Q2, Q2Q3, Q3Q4,
and Q4Q1 with radius p and centered at opposite corners
of A. The bucket 2 region should not take count of such
inner region. This football-shaped inner region Q1Q2Q3Q4

has fourfold of the area of region Q̂4Q1D (Fig. 6). To get
area of Q̂4Q1D, we first calculate the area of sector Q̂4Q1O3

S
Q̂4Q1O3

=
1

2
p2 · 6 Q4O3Q1

=
1

2
p2 ·

(
π

2
− 6 Q4O3F − 6 Q1O3A

)
=

1

2
p2 ·

(
π

2
− arcsin

δ

4p
− arcsin

δ

2p

) (6)



6

O

a

Bucket 2 boundaries

Bucket 3 boundaries

A
C

O
A

b

Bucket 2 boundaries

Bucket 3 boundaries

C
O

A

Bucket 2 boundaries

c

Bucket 3 boundaries

C
O

A

d

Bucket 2 boundaries

Bucket 3 boundaries

C

Fig. 5: Inner boundaries of the coverable regions of buckets 2 and 3 under a. m = 2, b. m = 3, c. m = 4, and d. m = 5. All arrowed
line segments are of length 2p

F

Q1

Q4 B
D

A

O3C

Fig. 6: A part of the football-shaped region shown in Fig. 3

We then deduct the area of region 4Q4O3B and 4Q1O3C .
S4Q4O3B =

δ

8

√
p2 −

(
δ
4

)2
S4Q1O3C =

δ

4

√
p2 −

(
δ
2

)2 (7)

Note that, by doing that, we subtract the quadrilateral twice,
and only once for each of two triangles. Thus, we have to
put them back by adding the area of rectangle O3BDC only
once, then we get the area ofQ1Q2Q3Q4, is given by Eq. (45)
in Appendix A.

The shape of bucket i (i > 2) regions is the same as
bucket 2 region except the radii of the arcs become ip. Recall
that the algorithm starts from a DM where p ≥ diagonal.
For convenience of presentation, we set p = diagonal, i.e.,
p =

√
5δ
2 . As we will see later, p > diagonal will not affect

our analysis. We therefore have the general formula g(i), is
given by Eq. (46) in Appendix A, to measure the area of
bucket i region.

3.2.2 Coverable Regions
Similar to bucket region, the coverable region consists of an
outer region and an inner region.

3.2.2.1 The First Bucket: First, let us focus on bucket
1. In Fig. 4, we illustrate the coverable regions of four
different density maps with m value ranging from 2 to
5. The solid blue line with zigzagged pattern indicates
the coverable region of cell A, denotes as A′. This region
contains all the cells that can be resolved into bucket 1 with
any subcell in A. A key technique here is to use a smooth

boundary (shown as dashed green line) to approximate the
area of A′. As m increases, the boundaries of A′ approach
that of A. The covering factor of bucket 1 with cell A is then
calculated as the ratio of the area of A′ to that of A. The area
of A′ is given by Eq. (47) in Appendix A.

3.2.2.2 The Second Bucket and Beyond: First, we
have to compute the area of the region A′i by only consid-
ering the outer boundaries. This is the same as we did in
Section 3.2.2.1 except the radii of arcs are ip. Such area for
bucket A′i, Sout(i), is given by Eq. (48) in Appendix A.

Second, we have to consider the inner boundaries of the
coverable region. Fig. 7 shows an example with m = 1 for
buckets 2 and 3. Clearly, any cell that crossed by a segment
of the theoretical inner boundary, as shown as thick solid
line, will not be able to resolve into bucket i, because they
are only resolvable to bucket (i − 1). In addition, there are
more cells that are not resolvable to either bucket i or (i −
1). Again, we define a smooth boundary (dashed line in
Fig. 7) to approximately separate the resolvable and non-
resolvable regions. Such boundaries are drawn as follow:
for each quadrant of cell A, we draw an arc (dashed line)
with radius (i−1)p and centered at the corner of the subcell
of A. Consequently, any cell that crossed by this arc cannot
resolve into bucket i, because they are too close to A. Such
boundary also approximates the real inner boundaries (with
a zigzagged pattern), and the area of region defined by such
approximated boundaries is

π(ip)2 + δip− π[(i− 1)p]2 − δ(i− 1)p (8)

Fig. 5 illustrates more cases with m values from 2 to
5. For the cases of m ≥ 2, we can use the same method
as case of m = 1 to generate the real inner boundaries
and approximated inner boundaries. Again, as m increases,
point C approaches point O, and the approximated inner
boundaries approach the theoretical inner boundaries. To
compute the area of the regions formed by the approximated
inner boundaries, we first need to derive angle 6 DCB that
encloses the shaded area shown in Fig. 8.

6 DCB =
π

2
− 6 JCD − 6 KCB (9)

When m is odd, the subcell is a square and we have DJ =
BK . When m is even, the subcell is a rectangle and we have
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C

O

Bucket 3 boundaries

Bucket 2 boundaries

A

Fig. 7: Inner boundaries of the coverable region with m = 1

G

KB

J

D
E I

CH

F

L

Fig. 8: The region bounded by four arcs in Fig. 7

DJ = BK/2. Consequently, we have two cases to calculate
6 DCB when m increases.{

β = π
2 − arcsin

θm
δ
2

p − arcsin θmδ
p , m is even

β = π
2 − arcsin

θm−1
δ
2

p − arcsin θm+1δ
p , m is odd

(10)

where θm is a function of m:

θm =
1

2
− 1

2m/2

With that, we can easily get the area of the Sector B̂DC

S
B̂DC

=
6 DCB

2π
· πp2 =

βp2

2
(11)

The area of the polygon BFDC is

SBFDC = S4BHC + S4DIC − SIFHC (12)

where S4BHC , S4DIC , and SIFHC are defined as Eq. (13),
Eq. (14), and Eq. (15), respectively.

S4BHC =


√
p2 − (θmδ)2 · θmδ ·

1

2
, m is even√

p2 − (θm+1δ)2 · θm+1δ ·
1

2
, m is odd

(13)

S4DIC =
√
p2 − (θmδ)2 · θmδ ·

1

2
(14)

SIFHC =

{
(θm)2 · δ

2

2 , m is even
θm−1 · θm+1 · δ

2

2 , m is odd
(15)

In addition, the area of the square LEFG is

SLEFG =
δ2

8
(16)

Therefore, with the above four equations, we obtain the area
of region bounded by four arcs (shaded region in Fig. 8) as

Sshade =(Ssector − S4DIC − S4BHC + SIFHC − SLEFG)

For the i-th bucket, we can get the general equation to
calculate Sshade, is given by Eq. (49) in Appendix A.

We denote the area of the coverable region A′ for bucket
i under different m values as f(i,m)

f(i,m) = S′A = Sout(i)− 4 · Sshade(i− 1)− SA (17)

The fully expanded formula for f(i,m) can be found in Eq.
(50) of Appendix A.

We use the non-covering factor α(m) to study the per-
centage of unresolvable pairs of cell at each level.

α(m) = 1− c(m) =

∑l
i=1[g(i)− f(i,m)]∑l

i=1 g(i)
(18)

To prove Theorem 2, we start by

α(m+ 1)

α(m)
=

∑l
i=1 g(i)−

∑l
i=1 f(i,m+ 1)∑l

i=1 g(i)−
∑l
i=1 f(i,m)

(19)

Note that functions g(i) and f(i,m) are given by Eq. (46)
and Eq. (17) already. By plugging those into Eq. (19), we can
prove that when m is even, α(m + 1)/α(m) converges to
2/3. Such proof can be found in Appendix B.

Now let us look at α(m + 2)/α(m + 1). The m-th
and (m + 2)-th levels in the kd-tree correspond to two
consecutive levels in the quad-tree. By Theorem 1, we have
α(m + 2)/α(m) converges to 1/2. Since we have already
shown α(m+ 1)/α(m) converges to 2/3, we can easily get

lim
p→0

α(m+ 2)

α(m+ 1)
=

3

4
(20)

The above concludes the proof of Theorem 2.

Numerical results (Table 2) generated from computing
expanded Eq. (18) show that non-covering factor ratios
quickly converge to 2/3 and 3/4, even under large p values
(corresponding to small total number of buckets). The only
exception is the case of m = 1. The reason is: when we visit
a high level of the tree, the coarse grid causes a relatively
big gap between the approximated boundaries (zigzagged
pattern) and real boundaries (Fig. 4a and Fig. 5a). When
we move to lower levels, the approximated boundary is a
better estimation of the real boundaries (Fig. 4d and Fig.
5d), and this leads to smaller modeling errors. As Table 2
shows, even when m = 2, the non-covering factor ratios
converge perfectly. Note this discussion is not focused on
the value of m, it is only a matter of the actual level of tree
m corresponds to. Such a fact does not diminish the value of
Theorem 2 because: (1) the case of p→ 0 implies the visited
tree level is low even when m = 1 therefore the theorem
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TABLE 2: Values of α(m+ 1)/α(m) derived from fully expanded Eq. (18) as computed by MATLAB (Version 8.4). Precision
around up to the 5th digit after decimal point

Density map levels
Total Number of histogram buckets

2 4 8 16 32 64 128 256 512 1024

m = 1 0.74197 0.64118 0.61973 0.61462 0.61336 0.61305 0.61297 0.61295 0.61295 0.61295
m = 2 0.67732 0.6691 0.66721 0.66679 0.66669 0.66667 0.66667 0.66667 0.66667 0.66667
m = 3 0.74807 0.74909 0.74968 0.7499 0.74997 0.74999 0.75 0.75 0.75 0.75
m = 4 0.67521 0.6688 0.66719 0.66679 0.6667 0.66667 0.66667 0.66667 0.66667 0.66667
m = 5 0.74448 0.74809 0.74941 0.74983 0.74995 0.74999 0.75 0.75 0.75 0.75
m = 6 0.67473 0.66891 0.66726 0.66682 0.66671 0.66668 0.66667 0.66667 0.66667 0.66667
m = 7 0.74276 0.74762 0.74929 0.7498 0.74994 0.74998 0.75 0.75 0.75 0.75
m = 8 0.67464 0.66903 0.66732 0.66685 0.66672 0.66668 0.66667 0.66667 0.66667 0.66667
m = 9 0.74193 0.74739 0.74923 0.74978 0.74994 0.74998 0.75 0.75 0.75 0.75
m = 10 0.67464 0.6691 0.66736 0.66686 0.66672 0.66668 0.66667 0.66667 0.66667 0.66667
m = 11 0.74151 0.74728 0.7492 0.74977 0.74994 0.74998 0.75 0.75 0.75 0.75
m = 12 0.67465 0.66915 0.66738 0.66687 0.66672 0.66668 0.66667 0.66667 0.66667 0.66667

covers such cases; (2) even if the algorithm starts on a high
level with some modeling errors, the time spent on high
levels is negligible therefore it does not impose significant
effects on performance analysis (see Section 4).

Case 4

End

Start

Starts at 2i−1Starts at 2i

Ends at 2(i+n)
Case 1 Case 3

Ends at 2(i+n)+1

Case 2

Fig. 9: Four cases in performance comparison listed from the
perspective of the kd-tree-based algorithm. Note that level 2i
corresponds to level i in the quad-tree according to Fig. 2, and
a blue line represents a level that only exists in the kd-tree

4 PERFORMANCE COMPARISON OF TWO TREES

Theorem 1 states that half of the node pairs are resolved
when one more level of the quad-tree is visited. Theorem 2
states that a quarter of the node pairs will be resolved when
the algorithm works on an even level (which has square
cells and is also in the corresponding quad-tree), and a third
will be resolved on the extra levels (with rectangular cell)
that only show up in the kd-tree. From these two theorems
we can easily derive a recurrence function that leads to the
time complexity of the algorithm (see Section 6.1 in [24] for
details). Although the time complexity of the algorithm is
the same under both trees, it is not clear how the actual
running time is affected by using a kd-tree. Intuitively, the
appearance of the extra levels provides opportunities to
resolve nodes earlier such that fewer node pairs are to be
resolved in the following levels. On the other hand, there
is extra cost to resolve pairs of nodes in such extra levels.
Only when such cost is overshadowed by the saved time

can we see a performance advantage from the kd-tree. With
Theorem 2, we are able to quantitatively compare the actual
running time of both algorithms under different cases (Fig.
9). Note that, in Algorithm 1, the time is only spent in two
types of operation: Type I – resolution function calls; and
Type II – computation of distances between data points in
the unresolved leaf nodes.

4.1 Case 1

In this case, the algorithm ends at identical levels on both
trees, they have the same number of unresolvable pairs
of nodes at leaf level and thus the number of point-to-
point distances to be computed. Therefore, we only need to
compare the number of resolutions called by the algorithm.

In the quad-tree, if a pair of nodes is unresolvable at the
current level, it will generate 16 pairs of nodes at the child
level. In other words, for all the node pairs at the starting
level, the algorithm leaves 16α0I pairs unresolved, where
α0 is the non-covering factor, and I is the total number of
node pairs at the starting level, respectively. At the next
level, it leaves 162α0α1I pairs unresolved. Thus, the total
number of calls to the resolution function on quad-tree is

R = I(1 + 16α0 + 162α0α1 + · · ·+ 16nα0α1 · · ·αn−1) (21)

Based on Theorem 1, we have

R = I

[
1 + 16α0 + 162α0

(1

2

)
+ · · ·+ 16nα0

(1

2

)n−1]
(22)

In the kd-tree, if a pair of nodes cannot be resolved
at current level, it will generate 4 pairs of nodes at its
child level. Similarly, we have total number of calls to the
resolution function in the kd-tree as

R′ = I(1 + 4β0 + 42β0β1 + · · ·+ 4nβ0β1 · · ·β2n−1) (23)

where βi is the non-covering factor, and I is the total
number of node pairs at the starting level. With Theorem
2, we have

R′ =I

[
1 + 4β0 + 42β0

(3

4

)
+ 43β0

(1

2

)
+ · · ·+ 42n−1β0

(1

2

)n−1
+ 42nβ0

(1

2

)n−1(3

4

)] (24)
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Consider any level i of the quad-tree visited by the
algorithm. Let us denote ∆i as the ratio of number of calls
to the resolution function of the two algorithms at that level
(for kd-tree, this includes the calls at level 2i − 1 and 2i).
From Eq. (22) and Eq. (24), we have

∆i =
16iα0( 1

2 )i−1

42i−1β0( 1
2 )i−1 + 42iβ0( 1

2 )i−1( 3
4 )

=
α0

β0
(25)

Since the algorithms start at identical levels of the tree in
this case, we have α0 = β0, which further gives ∆i = 1.
This means the two algorithms make the same number of
calls to the resolution function.

Another factor that impacts the total calls to the reso-
lution function is the existence of empty nodes, which are
automatically ignored by the algorithm. Such empty nodes
may appear earlier in the kd-tree due to the existence of the
rectangular nodes, and such scenarios yield a net discount
to the number of function calls made by the kd-tree. On
such a level 2i− 1 in the kd-tree, let us define B as number
of nodes at that level, ε as net discount to the number of
function calls, and K the number of empty nodes, we have

ε =

[(
B

2

)
−
(
B −K

2

)]
42i−1β0

(
1

2

)i−1
(26)

If we model the spatial distribution of data points as a
random process, the expected value of K can expressed as

E[K] = B · Pr{X} (27)

where X represents the event that a cell is empty. If the
data is uniformly distributed in space, we have Pr{X} =
(1 − 1

B )N for a dataset consisting of N points. Typically,
only when we move to the lower levels of the tree (such
that B → N ) do we see a non-negligible Pr{X}. However,
under skewed data distribution (e.g., Zipf), Pr{X} becomes
significantly high even at higher levels of the tree, leading
to a bigger discount ε.

4.2 Case 2
In this case, the dual-tree algorithm starts at identical levels
on the quad-tree and kd-tree, but ends at different levels. In
Case 1, we have already shown that the kd-tree beats the
quad-tree on the number of Type I operations, so we just
need to compare the difference of Type II operations.

In this case, the leaf nodes of the quad-tree are further
divided into two child nodes (representing rectangular re-
gions in space) in the kd-tree. As a result, more nodes can
be resolved by the algorithm on the kd-tree, giving rise to
fewer point-to-point distance computations. Suppose there
are J unresolved distances left at leaf level (i + n) of the
quad-tree (which is identical to level 2(i + n) of kd-tree).
Upon calling resolution function on the next level 2(i+n)+1
of the kd-tree, there are 3

4J unresolved distances left. Then,
we have a kd-/quad-tree speedup at this level as

Speedup =
JC1

3
4JC1 + PC2

(28)

where P is number of resolution function calls made at level
2(i + n) + 1 of kd-tree, C1 and C2 are the costs of distance
computation and resolution function call, respectively. Since

each resolution function call invokes 16 distance computa-
tion (Section 2.2), we have 16C1 = C2. Consequently, the
denominator of Eq. (28) becomes

3

4
JC1 + 16PC1 (29)

Let x be the average number of the points at the level
2(i+ n) + 1 of kd-tree. Since the minimum average number
of points at leaf level is set to 4, the average number of
points at one level up will be no less than 8, thus we
have 8 > x ≥ 4. Here each resolution function resolves
x2 distances, and we called resolution function P times. On
the other hand, we have the J/4 of distances resolved by the
resolution function at the bottom level of kd-tree. Therefore,
we have the following relationship between J and P .

J

4
= x2P ⇒ J

4x2
= P (30)

By plugging Eq. (29) and Eq. (30) into Eq. (28), we have

Speedup =
1

3
4 + 4

x2

(31)

Since x ∈ [4, 8), we get Speedup ∈ [1, 1.2308). Therefore,
the kd-tree algorithm again has better performance, with a
speedup up to 1.23X over the quad-tree algorithm.

4.3 Case 3

The algorithm starts at an odd level of kd-tree, which does
not exist in the quad-tree, and ends at the same level for
both trees. The latter is the same to Case 1, therefore the
efficiency depends on how many times the algorithm calls
the resolution function. Although the algorithm starts earlier
in the kd-tree (level 2i − 1), the number of nodes that are
unresolvable at the next level (i.e., level 2i) is exactly the
same as the starting level i of the algorithm on the quad-
tree. In other words, Eq. (22) remains the same and the only
change to Eq. (24) is that the first term I becomes I/4 + Iβ
where I/4 is the number of node pairs at level 2i−1, β is the
non-covering factor at level 2i− 1, and Iβ is the number of
function calls at level 2i. Here β has an upper bound of 3/4
(Theorem 2). Therefore, as compared to Case 1, the kd-tree
beats the quad-tree by an even bigger margin. However,
the extra margin is negligible because it only reflects the
changes to the first item in Eq. (24), which is the one with the
lowest order in the series. In other words, Case 3 is almost
the same scenario as Case 1.

4.4 Case 4

This case combines the differences between the quad-tree
and kd-tree as discussed in Cases 2 and 3: the kd-tree
starts running at a higher (odd) level, and it ends at the
extra leaf level that is not in the quad-tree. Since we have
shown that both scenarios lead to performance advantages
of the kd-tree, we conclude the kd-tree is the winner again.
Furthermore, the performance gap between kd-tree and
quad-tree can be modeled by Eq. (26) and Eq. (28).
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Case 9

End

Start

Starts at 3i−1Starts at 3i

Case 1

Ends at 3(i+n)+1

Case 2

Ends at 3(i+n)+2

Ends at 3(i+n)

Starts at 3i−2

Case 3

Case 4

Case 5

Case 6

Case 7

Case 8

Fig. 10: Nine cases in running the kd-tree-based algorithm.
Note that level 3i corresponds to level i in the oct-tree

5 EXTENSION TO 3D DATA

In this section, we present the analysis on 3D datasets. In 3D
systems, based on the same partitioning method as in 2D,
the quad-tree (now named oct-tree) bisects its x-, y-, and
z-dimension at each partition. Consequently, each internal
node of an oct-tree has eight children (instead of four as in
quad-tree). Given the same dataset, kd-tree introduces two
extra levels of nodes in between any two neighboring levels
of the oct-tree, in contrast to only one such extra level in
2D data (Fig. 9). Following the SDH start/stop condition
adopted in Section 2.2, we have nine scenarios to consider
in performance comparison (Fig. 10).

Our previous work [25] has shown Theorem 1 is also true
for oct-tree. We could still follow the geometric modeling
approach mentioned earlier to study the performance of
the kd-tree-based algorithm for 3D data. However, the case
of 3D is too complex to yield any closed-form formulae
towards an analysis as rigorous as in 2D data. Fortunately,
via a large number of simulations, we found that the non-
covering factor of kd-tree under 3D data has the following
patterns.

Conjecture 1. Let DMm be a level of the kd-tree built for 3D
data, and all nodes inDMm are cubes (i.e., an identical DM exists
in the corresponding oct-tree). Denote αm as the non-covering
factor of level m, we have

lim
p→0

αm+1

αm
=

5

6
, lim
p→0

αm+2

αm+1
=

4

5
, lim
p→0

αm+3

αm+2
=

3

4

Conjecture 1 can be viewed as a 3D version of Theorem
2. It is easy to see that the product of the three constants
in it is 1/2, which is consistent with Theorem 1 for the
oct-tree and we conclude the time complexity is again the
same for both trees under 3D. We have run simulations
under many different sets of parameters and the results
consistently support the conjecture. Results of one such
experiment are shown in Fig. 11. Based on this, we will
quantitatively compare the actual execution time of both
algorithms under the cases shown in Fig. 10.

 0.6

3/4

4/5
5/6

 1

 1.2

 4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20

R
a
ti
o
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Actual level on kd-tree visited by the algorithm

3 Buckets
4 Buckets
5 Buckets
6 Buckets
8 Buckets

10 Buckets

Fig. 11: Ratio of the non-covering factors of two neighboring
levels visited by the kd-tree-based algorithm in processing a
uniformly distributed 10-million-atom dataset. Each line repre-
sents one run under a particular p value. In each line, the ratio
of non-covering factor converges very well to what Conjecture
1 states after the first 3 levels

5.1 Start/Stop at The Same Level (Case 1)
The scenario is the same as what was discussed in Section
4.1 except there are two extra levels of DM in the kd-tree
between those corresponding to any two neighboring levels
in the oct-tree. In the oct-tree, if a pair of nodes is not
resolvable at current level, it calls resolution function for 64
pairs of nodes at the children’s level. So, after the algorithm
worked on resolving all the nodes at current level, it leaves
64α0I pairs unresolved. Consequently, after the algorithm
worked on resolving all the nodes at level i + 1, 642α0α1I
pairs remain unresolved, and so on. Thus, the total number
of calls to the resolution function on oct-tree is

R = I[1 + 64α0 + 642α0α1 + · · ·+ 64nα0α1 · · ·αn−1] (32)

Again, based on the Theorem 1, we have

R = I

[
1 + 64α0 + 642α0

(1

2

)
+ · · ·+ 64nα0

(1

2

)n−1]
(33)

In the kd-tree, if a pair of nodes cannot be resolved at
current level, it will visit 4 pairs of nodes at its child level,
therefore the total number of resolution function calls is

R′ = I

[
1+4β0+42β0β1+43β0β1β2+· · ·+43nβ0β1 · · ·β3n−1

]
(34)

With Conjecture 1, we have

R′ =I

[
1 + 4β0 + 42β0

(4

5

)
+ 43β0

(4

5

)(3

4

)
+ 44β0

(1

2

)
+ · · ·+ 43nβ0

(4

5

)n(3

4

)n(6

5

)n−1]
(35)

Similarly, let us denote ∆i as the ratio of number of calls to
the resolution function of oct-tree to kd-tree at level i of the
oct-tree visited (for kd-tree, this includes the calls at level
3i − 2, 3i − 1, and 3i). From Eq. (33) and Eq. (35), and also
considering α0 = β0 (since both algorithms start at identical
DMs in each tree), we have

∆i =
64iα0( 1

2 )i−1

β0( 1
2 )i−1

[
43i−2 + 43i−1( 5

6 ) + 43i( 5
6 )( 4

5 )
] =

16

15
(36)

Therefore, the kd-tree-based algorithm makes fewer (15/16
to be specific) calls to the resolution function comparing to
the quad-tree algorithm.
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In addition, the appearance of empty nodes also impacts
the total calls to the resolution function. In the 3D system,
since the kd-tree has two extra levels, more empty nodes
will appear in such intermediate levels, therefore the kd-tree
enjoys a larger discount to the number of function calls.

5.2 Stop Further (Case 2 and 3)

This scenario is a counterpart of case 2 in 2D: we only need
to compare cases that kd-tree has one and two extra level(s)
resulting in differences in numbers of Type II opreations.

5.2.1 Case 2

In this case, the leaf nodes of oct-tree are further partitioned
into two child nodes in the kd-tree. As a result, more nodes
can be resolved, and less point-to-point distance compu-
tations are required for the kd-tree. Suppose there are J
unresolved distances left at leaf level (i + n) of the oct-tree
(which is identical to level 3(i+n) of kd-tree). Upon calling
resolution function on the next level 3(i+ n) + 1 of the kd-
tree, there are 5

6J unresolved distances left. Then, we have
a kd-/oct-tree speedup at this level as

Speedup =
JC1

5
6JC1 + PC2

(37)

where P is number of resolution function calls made at level
3(i + n) + 1 of kd-tree, C1 and C2 are the costs of distance
computation and resolution function call, respectively. In a
3D system, each of resolution function call requires 8× 8 =
64 distance computations. Then, we could substitute the C2

with 64C1 to the denominator in Eq. (37),

5

6
JC1 + 64PC1 (38)

Similarly, let x be the average number of the points at the
level 3(i+ n) + 1 of kd-tree. Since our threshold b (average
number of points at leaf level) is set to be equal or greater
than 8, and the average number of points at one level in
advance will not be less than 16, we have 16 > x ≥ 8. The
number of distances resolved by the resolution function is
x2P , and there are J/6 distances resolved by the function at
3(i+ n) + 1 level of kd-tree. Therefore, we have

J

6
= x2P ⇒ J

6x2
= P (39)

Plugging Eq. (38) and Eq. (39) into Eq. (37), we have

Speedup =
1

5
6 + 64

6x2

(40)

Since x ∈ [8, 16), we get Speedup ∈ [1, 1.1429). Thus, the
performance of kd-tree beats that of oct-tree.

5.2.2 Case 3

In this case, the leaf nodes of oct-tree are partitioned into
four child nodes in the kd-tree. Similarly, in the kd-tree,
more nodes can be resolved by the resolution function call,
fewer distance computations are required. Suppose there are
J unresolved distances left at leaf level (i+n) of the oct-tree.
After calling the resolution function at the next two levels

3(i+n)+1 and 3(i+n)+2 of the kd-tree, there are ( 5
6 ·

4
5 )J

distances left. Then, we have a kd-/oct-tree speedup as

Speedup =
JC1

5
6 ·

4
5JC1 + (P1 + P2)C2

(41)

where P1 and P2 is number of resolution function calls made
at level 3(i+n)+1 and 3(i+n)+2 of kd-tree, C1 and C2 are
the costs of distance computation and resolution function
call, respectively. Similarly, we have C2 = 64C1, then the
denominator of Eq. (41) becomes

4

6
JC1 + 64C1(P1 + P2) (42)

Let x1 and x2 be the average number of the points at the
level 3(i+n) + 1 and 3(i+n) + 2, respectively. Similarly, by
having the pre-defined threshold b = 8, we get 32 > x1 ≥
16 > x2 ≥ 8. In addition, the number of distances resolved
by the function at the last two levels of kd-tree are J/6 and
1/5× 5J/6, respectively. This leads to

1

6
J = x21P1 at level 3(i+ n) + 1

1

5
×

5

6
J = x22P2 at level 3(i+ n) + 2

(43)

By plugging Eq. (42) and Eq. (43) into Eq. (41), we have

Speedup =
1

2
3 + 64

6x2
1

+ 64
6x2

2

(44)

Since x1 ∈ [16, 32) and x2 ∈ [8, 16), we have Speedup ∈
[1.1429, 1.3913). Thus, the kd-tree outperforms oct-tree with
a speedup up to 1.39X.

5.3 Start Earlier (Case 4 and 7)

This scenario is similar to Case 3 in 2D analysis: the algo-
rithm starts at one or two level(s) earlier on kd-tree, and
stops at identical levels in both oct-tree and kd-tree. Thus,
the difference lies on the number of resolution function calls.

5.3.1 Case 4
In this case, the algorithm starts one level earlier in the kd-
tree (level 3i − 1). Similarly, Eq. (33) is unchanged, and the
only change to Eq. (35) is that the first term I becomes I/4+
Iβ where I/4 is the number of node pairs at level 3i − 1, β
is non-covering factor at level 3i − 1, and Iβ is number of
function calls at level 3i. Here β has an upper bound of 5/6
(Conjecture 1). Again, as such numbers are very small, it
does not change the conclusion we made in Case 1.

5.3.2 Case 7
In this case, the dual-tree algorithm starts two levels earlier
on the kd-tree (level 3i − 2). Again, Eq. (33) is unchanged,
and the change to Eq. (35) is that the first term becomes
I/16 + I/4β′ + Iβ′′, where I/16 is number of node pairs at
level 3i − 2, I/4 is number of node pairs at level 3i − 1, β′

is the non-covering factor at level 3i− 2, β′′ is non-covering
factor at level 3i−1, I/4β′ is number of function calls at level
3i− 1, and Iβ′′ is number of function calls at level 3i. Here
β′ and β′′ have upper bound of 3/4 and 5/6, respectively.
This, again, does not change the results of Case 1.
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Fig. 12: Ratios of (a) Type I operations and (b) Type II operations made by quad-tree vs. that by the kd-tree under different
histogram bucket numbers and data distribution patterns (i.e., uniform and Zipf)

5.4 Start Earlier, Stop Further (Case 5, 6, 8, and 9)

In this scenario, the dual-tree algorithm starts at one or two
level(s) earlier and stops at one or two level(s) further. We
can simply combine the aforementioned cases to carry out
the performance analysis: Case 5 can be modeled by Eq. (36)
and Eq. (37); Case 6 can be modeled by Eq. (36) and Eq. (41);
Case 8 can be modeled by Eq. (36) and Eq. (37); and Case 9
can be modeled by Eq. (36) and Eq. (41).

6 EXPERIMENTAL EVALUATION

We have implemented both algorithms with the C++ pro-
gramming language and our experiments were run on
a Mac OS X (El Capitan) server with an Intel i7-6700K
Quad-Core 4.0GHz processor and 16GB of 1867MHz DDR3
memory. We used one real dataset, which was generated
from a molecular dynamics study to simulate a bilayer
membrane lipid system, and two synthetic datasets that
represent different spatial distributions of data (i.e., Uniform
and Zipf with order 1.0) in our experiments. All synthetic
data was generated within a box with lateral length 25,000.
All experiments were run under a series of histogram res-
olutions (i.e., 4-10 buckets) and different system size (i.e.,
100,000 to 1,600,000 points).

6.1 Results for 2D data

We first evaluate our analysis related to Case 1 of 2D
data. Fig. 12a shows the recorded ∆i values under different
numbers of tree levels visited by the algorithm (i.e., m in
Theorem 2). For the uniformly distributed data, ∆i is close
to 1 for most the levels. For smaller i, we observe smaller
∆i values. This is due to the modeling errors caused by the
coarse grid, as discussed at the end of Section 3. Note that
such errors disappear atm = 3 in Fig. 12a. For the Zipf data,
we see ∆i values greater than 1 for larger i - this is due to
the fact that empty nodes are found earlier in kd-tree. Such
results confirm our analysis shown in Section 4.1.

Related to Case 2, Fig. 12b shows the ratio of total
number of distance computations made by the two trees.
Recall this is the case where the kd-tree has an extra level on
the bottom. The curves converge to 4/3 in the uniformly
distributed data, meaning the kd-tree saves 1/4 of the
distance computations. For the skewed data, we see more

TABLE 3: Ranges of speedup (kd-tree over quad-tree) observed
in all cases of 2D experiments shown in Fig. 13

Scenario Data Type

Uniform Zipf Real

Case 1 0.993 – 1.002 0.974 – 0.996 0.996 – 1.006
Case 2 1.052 – 1.204 1.159 – 1.230 1.084 – 1.219
Case 3 0.994 – 1.005 0.984 – 1.004 0.993 – 1.004
Case 4 1.042 – 1.212 1.154 – 1.228 1.095 – 1.229

fluctuations in the results, and the speedup is even higher
than those in uniform data for most of the cases. This
confirms the analysis shown in Eq. (30).

Fig. 13 plots the actual running time of the two algo-
rithms under different data sizes and data distributions. The
ranges of speedup of kd-tree over quad-tree we observed
in such experiments are presented in Table 3. Recall that
the number of buckets in the histogram (or the value of
p) determines which tree level the algorithm starts, and
the data size determines which level the algorithm stops.
Therefore, we set those two numbers in different ways to
create the four cases discussed in Section 4. In Case 1 (Fig.
13a) and Case 3 (Fig. 13b), the performance of the two trees
is almost identical, confirming our findings in Sections 4.1
and 4.3. In Case 2 (Fig. 13c) and Case 4 (Fig. 13d), however,
the performance gap between the two trees becomes much
larger. This indicates that the reduced distance computa-
tions caused by the extra level on the bottom of the kd-tree
plays a significant role in boosting performance, and the
expected speedup of [1X, 1.2308X] mentioned in Section
4.2 is an accurate estimation.

6.2 Results for 3D Data

We first verify the key results for Case 1 studied in Section
5.1. Fig. 15 shows the ∆i values recorded under different
numbers of levels i visited by the algorithm for 3D data.
For the uniform data, ∆i approaches 16/15 (baseline) as
expected from Eq. (36) when i is beyond 3. For smaller
i values, we have unstable ∆i values. This is similar to
2D system: coarse grid causes fluctuations on non-covering
factors. For the Zipf data, the ∆i values are greater than
16/15 for larger i, this is, much like the 2D cases, caused by
the earlier appearance of empty nodes in the kd-tree.
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Fig. 13: Running time of the dual-tree algorithm in 2D systems under different data sizes and data distribution patterns
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For Case 2, Fig. 14a shows the ratio of the number of
distance computations performed by the oct-tree vs. kd-
tree. For the uniform data, the ratios are all very close
to 6/5. This means the kd-tree saves 1/6 of the distance
computations performed by the oct-tree, confirming our
findings in Conjecture 1. Under Case 3 (Fig. 14b) such ratios
are all close to 1.5, indicating the kd-tree saves 1/3 of the
distance computations over oct-tree. This further validates
Conjecture 1, as 1.5 = 6/5× 5/4. For both cases, the results
of the Zipf data show more fluctuations, and in most cases
the ratio is smaller than the 1.2 and 1.5 found in uniform
data. Our explanation is: skewed data is known to have
distances resolved earlier as compared to uniform data [25].
At any level of the tree, although the average number of
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data points in the nodes is the same as in uniform data, we
could see more nodes with fewer points due to the skewed
spatial distribution. As a result, the advantage of adding
extra levels in the kd-tree is less significant. Nevertheless,
the kd-tree is still the obvious winner in performance.

We also recorded the total running time of both algo-
rithms under the nine different cases discussed in Section 5.
Due to space limit, we put them in Appendix C. In summary,
the kd-tree outperforms oct-tree in all experimental runs we
conducted, and the speedup in all cases are within the range
suggested by our analysis.

7 CONCLUSIONS

SDH is a type of 2-body statistics that found applications in
many computing domains. Being the main building block of
high-level analytics, SDH is of great importance in statistical
learning and scientific discovery. In the past years, research
on efficient processing of SDH has settled on a series of dual-
tree algorithms that work on resolving distances between
pairs of nodes of a spatial tree. Main implementations of
the dual-tree algorithm are based on quad/oct-tree, which
partitions data space along all dimensions, and the kd-tree,
which does so along a single dimension. In this paper, we
present quantitative analysis on the performance of dual-
tree algorithms based on these two types of tree structures.
Our analysis established on a geometric modeling frame-
work suggests the kd-tree-based algorithm outperforms the
quad-/oct-tree-based algorithm under all scenarios with dif-
ferent data sizes and histogram resolution. We also provide
bounds for the speedup of kd-tree over quad-/oct-tree, and
extensive experiments with both synthetic and real data
inputs confirm our findings. We believe our results and
methodology can also provide insights on analyzing similar
algorithms for processing more general n-body statistics.
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APPENDIX A
EQUATIONS NOT SHOWN IN SECTION 3
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APPENDIX B
PROOF OF EQ. (19) CONVERGING TO 2/3
To prove the α(m+ 1)/α(m) converges to 2/3, it is equivalent to prove the following equation.

l∑
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The right hand side of the Eq. (51) could be expressed as
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We could use the difference between LHS and RHS to prove Eq. (51)
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Since the m is level of the density map, when m getting larger, the approximated boundary will approach to the
theoretical boundary. Therefore when m approaches to infinity, the θ approaches to 1
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√

5θm+2

5i
→ π

2

5

2

(
arcsin

√
5

10(i− 1)
+ arcsin

√
5

5(i− 1)

)
→ 0

l∑
i=2

[
5βodd −

15

2
βeven +

5

4
π − 5

2

(
arcsin

√
5

10(i− 1)
+ arcsin

√
5

5(i− 1)

)]
(i− 1)2 → 0

Therefore, we have LHS = RHS, and Eq. (51) is proved.
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APPENDIX C
MORE EXPERIMENTAL RESULTS OF 3D DATA

Fig. 16 and Fig. 17 present the actual running time of the two algorithms under different data sizes and data distribution
in 3D systems.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

350K 400K 450K 500K 550K

E
x
e
c
u
ti
o
n
 T

im
e
 (

K
 s

e
c
)

Number of Atoms

4 Buckets

Oct-Tree(Uniform)
kd-Tree(Uniform)

Oct-Tree(Zipf)
kd-Tree(Zipf)

Oct-Tree(Real)
kd-Tree(Real)

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

350K 400K 450K 500K 550K

Number of Atoms

8 Buckets

(a) Case 1

Fig. 16: Total running time of the dual-tree algorithm running on top of oct-tree and kd-tree under different data sizes and data
distribution - Case 1
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Fig. 17: Total running time of the dual-tree algorithm running on top of oct-tree and kd-tree under different data sizes and data
distribution - other cases


